Investigation for flavanone synthesis in subcritical water with La-ZrO2, Mg-ZrO2, and Ca-ZrO2 as solid base catalysts

The Journal of Supercritical Fluids(2024)

引用 0|浏览0
暂无评分
摘要
In this study, flavanone was synthesized via a two-step process, Claisen–Schmidt condensation between 2’-hydroxyactophenone and benzaldehyde followed by isomerization, in subcritical water with ZrO2 based catalysts. Kinetic analysis was conducted to quantitatively show the catalytic activity of different modified ZrO2. The activity of ZrO2 was improved upon incorporating with active metal species. Compared with La-ZrO2 and Mg-ZrO2, Ca-ZrO2 showed the highest activity attributed to strong basicity, but substantial formation of side product and loss of product were observed. La-ZrO2 showed weaker activity than Mg-ZrO2, though La-ZrO2 had higher basicity. One explanation was the dissociation of water to provide OH− on the catalyst surface was more challenging since containing significantly more active sites with strong water affinity. Moreover, such active sites contributed less to reaction due to dense water surrounding the catalyst surface. The reaction catalyzed by Mg-ZrO2 reached flavanone selectivity of 72.2% in 3hours at 150 °C.
更多
查看译文
关键词
Subcritical water,solid base catalyst,modified zirconium oxide,flavanone synthesis,Claisen–Schmidt condensation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要