Variable climatic conditions dominate decreased wetland vulnerability on the Qinghai‒Tibet Plateau: Insights from the ecosystem pattern-process-function framework

Journal of Cleaner Production(2024)

引用 0|浏览1
暂无评分
摘要
Wetlands are of global importance in providing essential ecosystem services but are also sensitive to climate change and human activities. Monitoring and assessing wetland vulnerability are crucial for ecological conservation and management strategies. However, the framework of wetland vulnerability assessment and the underlying mechanisms have not been well studied. In this study, the spatiotemporal variations in wetland vulnerability on the Qinghai‒Tibet Plateau (QTP) between 1990 and 2020 were investigated based on the ecosystem pattern-process-function framework. The key driving factors were identified by partial least squares structural equation modelling (PLS-SEM) and multiscale geographically weighted regression (MGWR) models. Our results showed that the wetland ecosystem pattern index (EPI), ecosystem process index (EPOI), ecosystem function index (EFI), and wetland vulnerability index (WVI) all demonstrated an increasing pattern from northwest to southeast. Between 1990 and 2020, the mean WVI values gradually decreased from 0.616 to 0.588, indicating a steady improvement in the wetland ecosystem on the QTP. Rapid urbanization increased the EPOI, while rugged topography increased both the EPI and EPOI, and the increase in hydrological abundance enhanced the EFI, which in turn contributed to an increase in the WVI. Conversely, climatic conditions led to a reduction in the EPI, which in turn resulted in a significant decrease in the WVI. Therefore, although urbanization and topographical and hydrological factors have somewhat exacerbated the WVI on the QTP, variable climatic conditions have driven the decline in wetland vulnerability in the last three decades. Furthermore, our results indicated that the proposed framework could provide a comprehensive approach for wetland vulnerability assessment and useful implications for wetland conservation and management.
更多
查看译文
关键词
Wetland vulnerability,Ecosystem pattern,Ecosystem process,Ecosystem function,Driving factors,Qinghai‒Tibet Plateau
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要