The Production of Three-Dimensional Metal Objects Using Oscillatory-Strain-Assisted Fine Wire Shaping and Joining

Anagh Deshpande,Keng Hsu

Materials(2024)

引用 0|浏览0
暂无评分
摘要
Material shaping and joining are the two fundamental processes that lie at the core of many forms of metal manufacturing techniques, including additive manufacturing. Current metal additive manufacturing processes such as laser/e-beam powder bed fusion and Directed Energy Deposition predominantly use heat and subsequent melt–fusion and solidification to achieve shaping and joining. The energy efficiency of these processes is severely limited due to energy conversion losses before energy is delivered at the point of melt–fusion for shaping and joining, and due to losses through heat transfer to the surrounding environment. This manuscript demonstrates that by using the physical phenomenon of lowered yield stress of metals and enhanced diffusion in the presence of low amplitude high frequency oscillatory strain, metal shaping and joining can be performed in an energy-efficient way. The two performed simultaneously enable a metal additive manufacturing process, namely Resonance-Assisted Deposition (RAD), that has several unique capabilities, like the ability to print net-shape components from hard-to-weld alloys like Al6061 and the ability to print components with a very high aspect ratio. In this study, we show this process’s capabilities by printing solid components using aluminum-based metal alloys.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要