Grape seed-derived procyanidins decreases neuropathic pain and nerve regeneration by suppression of toll-like receptor 4-myeloid differentiation factor-88 signaling.

Li Hu, Erdan An,ZhiPeng Zhu, Ying Cai, Xiaoyan Ye,Hongmei Zhou, Hejia Ge

Molecular pain(2024)

引用 0|浏览0
暂无评分
摘要
Background: Recent studies have shown that peripheral nerve regeneration process is closely related to neuropathic pain. Toll-like receptor 4 (TLR4) signaling was involved in different types of pain and nerve regeneration. TLR4 induced the recruitment of myeloid differentiation factor-88 adaptor protein (MyD88) and NF-κB-depended transcriptional process in sensory neurons and glial cells, which produced multiple cytokines and promoted the induction and persistence of pain. Our study aimed to investigate procyanidins's effect on pain and nerve regeneration via TLR4-Myd88 signaling. Methods: Spinal nerve ligation (SNL) model was established to measure the analgesic effect of procyanidins. Anatomical measurement of peripheral nerve regeneration was measured by microscopy and growth associated protein 43 (GAP43) staining. Western blotting and/or immunofluorescent staining were utilized to detect TLR4, myeloid differentiation factor-88 adaptor protein (MyD88), ionized calcium-binding adapter molecule 1 (IBA1) and nuclear factor kappa-B-p65 (NF-κB-p65) expression, as well as the activation of astrocyte and microglia. The antagonist of TLR4 (LPS-RS-Ultra, LRU) were intrathecally administrated to assess the behavioral effects of blocking TLR4 signaling on pain and nerve regeneration. Result: Procyanidins reduced mechanical allodynia, thermal hyperalgesia and significantly suppressed the number of nerve fibers regenerated and the degree of myelination in SNL model. Compared with sham group, TLR4, MyD88, IBA1 and phosphorylation of NF-κB-p65 were upregulated in SNL rats which were reversed by procyanidins administration. Additionally, procyanidins also suppressed activation of spinal astrocytes and glial cells. Conclusion: Suppression of TLR4-MyD88 signaling contributes to the alleviation of neuropathic pain and reduction of nerve regeneration by procyanidins.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要