Three-dimensional ordered FeTe-SmCoO3 nanocomposite: as efficient electrocatalyst for water oxidation

Journal of Alloys and Compounds(2024)

引用 0|浏览0
暂无评分
摘要
In this work, FeTe-SmCoO3 is fabricated through a hydrothermal method and then coated on a stainless steel (SS) substrate to enhance the electrocatalytic performance. The crystal structure, surface chemical state, and morphological features of pure (FeTe and SmCoO3) and heterogeneous catalysts (FeTe-SmCoO3) are determined via XRD, XPS, and TEM/EDX techniques. The fabricated FeTe-SmCoO3 electrocatalyst is attributed to the particular morphological design resulting from the synergistic effect of FeTe and SmCoO3 phases. The as-developed high exposure level of active sites with structural transformation greatly promoted the oxidation property with an overpotential only of 199mV to derive a current density of 10mA/cm2, also observed a small Tafel slope of 72 mVdec-1 with extraordinary stability of 90h. The modified heterogeneous catalyst provides outstanding catalytic behavior toward OER in the alkaline solution, due to flexibility and multiple accessible oxidation states of samarium, cobalt, and iron ions. The catalyst not only acquires additional reaction sites and opens up new channels through the dispersion of the metal centers, but also achieves quick electron transfer in FeTe-SmCoO3 nanocomposite through the interconnection between two phases.
更多
查看译文
关键词
Transition metal chalcogenide,FeTe-SmCoO3,Heterogeneous electrocatalyst,SS substrate,Electrochemical oxygen evolution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要