Implementing Non-Poissonian Forecasts of Distributed Seismicity into the 2022 Aotearoa New Zealand National Seismic Hazard Model

BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA(2024)

引用 0|浏览2
暂无评分
摘要
Seismicity usually exhibits a non -Poisson spatiotemporal distribution and could undergo nonstationary processes. However, the Poisson assumption is still deeply rooted in current probabilistic seismic hazard analysis models, especially when input catalogs must be declustered to obtain a Poisson background rate. In addition, nonstationary behavior and scarce earthquake records in regions of low seismicity can bias hazard estimates that use stationary or spatially precise forecasts. In this work, we implement hazard formulations using forecasts that trade-off spatial precision to account for overdispersion and nonstationarity of seismicity in the form of uniform rate zones (URZs), which describe rate variability using non -Poisson probabilistic distributions of earthquake numbers. The impact of these forecasts in the hazard space is investigated by implementing a negative -binomial formulation in the OpenQuake hazard software suite, which is adopted by the 2022 Aotearoa New Zealand National Seismic Hazard Model. For a 10% exceedance probability of peak ground acceleration (PGA) in 50 yr, forecasts that only reduce the spatial precision, that is, stationary Poisson URZ models, cause up to a twofold increase in hazard for low -seismicity regions compared to spatially precise forecasts. Furthermore, the inclusion of non -Poisson temporal processes in URZ models increases the expected PGA by up to three times in low -seismicity regions, whereas the effect on high -seismicity is minimal (similar to 5%). The hazard estimates presented here highlight the relevance, as well as the feasibility, of incorporating analytical formulations of seismicity that go beyond the inadequate stationary Poisson description of seismicity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要