Engineered dsRNA-protein nanoparticles for effective systemic gene silencing in plants

HORTICULTURE RESEARCH(2024)

引用 0|浏览1
暂无评分
摘要
Long-distance transport or systemic silencing effects of exogenous biologically active RNA molecules in higher plants have not been reported. Here, we report that cationized bovine serum albumin (cBSA) avidly binds double-stranded beta-glucuronidase RNA (dsGUS RNA) to form nucleic acid-protein nanocomplexes. In our experiments with tobacco and poplar plants, we have successfully demonstrated systemic gene silencing effects of cBSA/dsGUS RNA nanocomplexes when we locally applied the nanocomplexes from the basal ends of leaf petioles or shoots. We have further demonstrated that the cBSA/dsGUS RNA nanocomplexes are highly effective in silencing both the conditionally inducible DR5-GUS gene and the constitutively active 35S-GUS gene in leaf, shoot, and shoot meristem tissues. This cBSA/dsRNA delivery technology may provide a convenient, fast, and inexpensive tool for characterizing gene functions in plants and potentially for in planta gene editing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要