Comparing Optimization Approaches in the Direct Displacement-Based Design of Tall Mass Timber Lateral Systems

COMPUTING IN CIVIL ENGINEERING 2023-RESILIENCE, SAFETY, AND SUSTAINABILITY(2024)

引用 0|浏览0
暂无评分
摘要
Numerical analyses can aid design exploration, but there are several computational approaches available to consider design options. These range from "brute-force" search to optimization. However, the implementation of optimization can be challenging for the complex, time-intensive analyses required to assess seismic performance. In response to this challenge, this study tests several optimization strategies for the direct displacement- based design of a lateral force-resisting system (LFRS) using mass timber panels with U-shaped flexural plates (UFPs) and post-tensioning high-strength steel rods. The study compares two approaches: (1) a brute-force sampling of designs and data filtering to determine acceptable solutions; and (2) various automated optimization algorithms. The differential evolution algorithm was found to be the most efficient and robust approach, saving 90% of computational cost compared to brute-force sampling while producing comparable solutions. However, every optimization formulation did not return best range of design options, often requiring reformulation or hyperparameter tuning to ensure effectiveness.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要