MgO/KH2PO4 and Curing Moisture Content in MKPC Matrices to Optimize the Immobilization of Pure Al and Al-Mg Alloys

Carla Fernandez-Garcia,Maria Cruz Alonso, Jose Maria Bastidas,Ines Garcia-Lodeiro, Raul Fernandez

MATERIALS(2024)

引用 0|浏览0
暂无评分
摘要
Magnesium Potassium Phosphate Cements (MKPCs) are considered a good alternative for the immobilization of aluminium radioactive waste. MKPC composition and moisture curing conditions are relevant issues to be evaluated. The corrosion of pure aluminium (A1050) and AlMg alloys (AA5754) with 3.5% of Mg is studied in MKPC systems prepared with different MgO/KH2PO4 (M/P) molar ratios (1, 2, and 3M) and moisture curing conditions (100% Relative Humidity (RH) and isolated in plastic containers (endogenous curing)). The Al corrosion potential (E-corr) and corrosion kinetic (i(corr) and V-corr) are evaluated over 90 days. Additionally, the pore ion evolution, the matrix electrical resistance, the pore structure, and compressive strength are analysed. The corrosion process of Al alloy is affected by the pH and ion content in the pore solution. The pore pH increases from near neutral for the 1M M/P ratio to 9 and 10 for the 2 and 3M M/P ratio, increasing in the same way the corrosion of pure Al (AA1050) and AlMg alloys (AA5754). The effect of Mg content in the alloy (AA5754) becomes more relevant with the increase in the M/P ratio. The presence of phosphate ions in the pore solution inhibits the corrosion process in both Al alloys. The MKPC physicochemical stability improved with the increase in the M/P ratio, higher mechanical strength, and more refined pore structure.
更多
查看译文
关键词
magnesium potassium phosphate cement (MKPC),immobilization of Al radioactive waste,corrosion,hydrogen release,pH,pore ion content
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要