Differential effects of PDE4A5 on cAMP-dependent forms of long-term potentiation

Satya Murthy Tadinada, Emily N. Walsh, Utsav Mukherjee,Ted Abel

crossref(2024)

引用 0|浏览3
暂无评分
摘要
cAMP signaling is critical for memory consolidation and certain of forms long-term potentiation (LTP). Phosphodiesterases (PDEs), enzymes that degrade the second messenger cAMP and cGMP, are highly conserved during evolution and represent a unique set of drug targets, given the involvement of these enzymes in several pathophysiological states including brain disorders. The PDE4 family of cAMP selective PDEs, exert regulatory roles in memory and synaptic plasticity, but the specific roles of distinct PDE4 isoforms in these processes are poorly understood. Building on our previous work demonstrating that spatial and contextual memory deficits were caused by expressing selectively the long isoform of the PDE4A subfamily, PDE4A5, in hippocampal excitatory neurons, we now investigate the effects of PDE4A isoforms on different cAMP-dependent forms of LTP. We find that PDE4A5 impairs long-lasting LTP induced by theta burst stimulation (TBS) while sparing long-lasting LTP induced by spaced 4-train stimulation (4X100Hz). This effect requires the unique N-terminus of PDE4A5 and is specific to this long isoform. Targeted overexpression of PDE4A5 in area CA1 is sufficient to impair TBS-LTP, suggesting that cAMP levels in the postsynaptic neuron are critical for TBS-LTP. Our results shed light on the inherent differences among the PDE4A subfamily isoforms, emphasizing the importance of the long isoforms, which have a unique N-terminal region. Advancing our understanding of the function of specific PDE isoforms will pave the way for developing isoform-selective approaches to treat the cognitive deficits that are debilitating aspects of psychiatric, neurodevelopmental, and neurodegenerative disorders. Key Points ![Figure][1] GRAPHICAL ABSTRACT Spaced tetanic stimulation and TBS induce cAMP synthesis and activation of PKA to promote signaling cascades that facilitate expression of long-lasting LTP at the CA3-CA1 synapses. PDE4A5 overexpression in the hippocampus selectively impairs cAMP and PKA dependent TBS-LTP at the CA3-CA1 synapses, while sparing LTP induced by spaced tetanization. Key Points ### Competing Interest Statement Dr. Ted Abel serves on the Scientific Advisory Board of EmbarkNeuro and is a scientific advisor to Aditum Bio and Radius Health. [1]: pending:yes
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要