谷歌浏览器插件
订阅小程序
在清言上使用

Mixed selectivity: Cellular computations for complexity

NEURON(2024)

引用 0|浏览10
暂无评分
摘要
The property of mixed selectivity has been discussed at a computational level and offers a strategy to maximize computational power by adding versatility to the functional role of each neuron. Here, we offer a biologically grounded implementational-level mechanistic explanation for mixed selectivity in neural circuits. We define pure, linear, and nonlinear mixed selectivity and discuss how these response properties can be obtained in simple neural circuits. Neurons that respond to multiple, statistically independent variables display mixed selectivity. If their activity can be expressed as a weighted sum, then they exhibit linear mixed selectivity; otherwise, they exhibit nonlinear mixed selectivity. Neural representations based on diverse nonlinear mixed selectivity are high dimensional; hence, they confer enormous flexibility to a simple downstream readout neural circuit. However, a simple neural circuit cannot possibly encode all possible mixtures of variables simultaneously, as this would require a combinatorially large number of mixed selectivity neurons. Gating mechanisms like oscillations and neuromodulation can solve this problem by dynamically selecting which variables are mixed and transmitted to the readout.
更多
查看译文
关键词
mixed selectivity,cognition,coding,computations,brain,neuron,circuits,gating,oscillations,neuromodulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要