Sulfite permeability and sulfur accumulation in a sulfite depolarized electrolyser

Journal of Electroanalytical Chemistry(2024)

引用 0|浏览2
暂无评分
摘要
Sulfur dioxide or sulfite depolarized electrolyser is considered a promising technology for green hydrogen production. A sulfite depolarized electrolyser adopting sulfite wastewater is developed for both hydrogen production and wastewater treatment in our project, e.g. flue gas desulfurization wastewater and lead plate pre-desulfurization solution. Sulfite permeability and sulfur accumulation are primary challenges of the sulfite depolarized electrolyser for long-term stability. The electrochemical behaviors of SO32− reduction are investigated particularly here, which exhibits a 3.06-electron route on the homemade Pt-Pd/C catalyst. The reduction of SO32− to S0 is observed using an electrochemical quartz crystal microbalance. The sulfite diffusion coefficients of three proton exchange membranes are also determined. A frequent polarity inverted electrolysis is developed to remove the sulfur deposits and keep cell stability. Adopting a lead plate pre-desulfurization solution as the anolyte, both the fresh and repaired sulfite depolarized electrolyser can achieve a remarkable current density of > 500 mA/cm2 at 2.0 V. 200 h long-term test indicates excellent anodic depolarization and long-term stability for hydrogen production. The strategy may shed light on the further development of industrial applications.
更多
查看译文
关键词
Hydrogen production,Water electrolysis,Depolarization,Sulfite,Wastewater treatment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要