Enhancing the Solubility, Stability, and Bioavailability of Retinol Acetate through Mechanochemistry.

Yingying Liao, Li Sun, Duncong Fan,Wenhao Xu, Maxim V Zelikman,Pei Qiao

Biomacromolecules(2024)

引用 0|浏览0
暂无评分
摘要
This study utilizes mechanochemistry to prepare retinol acetate (RA) solid dispersion (RA-sodium starch octenyl succinate (SSOS)), resulting in improved solubility, stability, and bioavailability compared with raw RA and commercial RA microcapsules. RA, poloxamer 188, SSOS, and milling beads (8 mm) were mixed in a ratio of 2:1:8:220 (w/w) and ball-milled at 100 rpm for 3 h. RA-SSOS exhibited a solubility of 1020.35 μL/mL and a 98.09% retention rate after aging at 30 °C. Rats fed with RA-SSOS showed an ∼30% increase in organ RA content. Characterization analysis attributed the solubility and stabilization of RA-SSOS to hydrogen bonding between RA and SSOS, along with an amorphous state. RA-SSOS offers significant advantages for the pharmaceutical and food industries, leveraging mechanochemistry to enhance solid dispersions for hydrophobic compounds and optimize drug delivery.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要