Influence of Zr Microalloying on the Microstructure and Room-/High-Temperature Mechanical Properties of an Al-Cu-Mn-Fe Alloy.

Jingbin Liu, Jingyi Hu,Mengyu Li,Guiliang Liu,Yuying Wu,Tong Gao, Shushuai Liu,Xiangfa Liu

Materials (Basel, Switzerland)(2024)

引用 0|浏览2
暂无评分
摘要
Here, 0.3 wt.%Zr was introduced in an Al-4 wt.%Cu-0.5 wt.%Mn-0.1 wt.%Fe alloy to investigate its influence on the microstructure and mechanical properties of the alloy. The microstructures of both as-cast and T6-treated Al-Cu-Mn-Fe (ACMF) and Al-Cu-Mn-Fe-Zr (ACMFZ) alloys were analyzed. The intermetallic compounds formed through the casting procedure include Al2Cu and Al7Cu2Fe, and the Al2Cu phase dissolves into the matrix and re-precipitates as θ' phase during the T6 process. The introduction of Zr results in the precipitation of L12-Al3Zr nanometric precipitates after T6, while the θ' precipitates in ACMFZ alloy are much finer than those in ACMF alloy. The L12-Al3Zr precipitates were found coherently located with θ', which was assumed beneficial for stabilizing the θ' precipitates during the high-temperature tensile process. The tensile properties of ACMF and ACMFZ alloys at room temperature and elevated temperatures (200, 300, and 400 °C) were tested. Especially, the yield strength of ACMFZ alloys can reach 128 MPa and 65 MPa at 300 °C and 400 °C, respectively, which are 31% and 33% higher than those of ACMF alloys. The strengthening mechanisms of grain size, L12-Al3Zr, and θ' precipitates on the tensile properties were discussed. This work may be referred to for designing Al-Cu alloys for application in high-temperature fields.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要