Robust field-free switching using large unconventional spin-orbit torque in an all-van der Waals heterostructure

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
The emerging all-van der Waals (vdW) magnetic heterostructure provides a new platform to control the magnetization by the electric field beyond the traditional spintronics devices. One promising strategy is using unconventional spin-orbit torque (SOT) exerted by the out-of-plane polarized spin current to enable deterministic magnetization switching and enhance the switching efficiency. However, in all-vdW heterostructures, large unconventional SOT remains elusive and the robustness of the field-free switching against external magnetic field hasn't been examined, which hinder further applications. Here we demonstrate the field-free switching in an all-vdW heterostructure combining a type-II Weyl semimetal TaIrTe4 and above-room-temperature ferromagnet Fe3GaTe2. The fully field-free switching can be achieved at 2.56 x 10^10 A per m2 at 300K and a large SOT efficiency of the out-of-plane polarized spin current generated by TaIrTe4 is determined to be 0.37. Moreover, we find that the switching polarity cannot be changed until the external in-plane magnetic field reaches 252mT, indicating a robust switching against the magnetic field. The numerical simulation suggests the large unconventional SOT reduces the switching current density and enhances the robustness of the switching. Our work shows that all-vdW heterostructures are promising candidates for future highly efficient and stable SOT-based devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要