谷歌浏览器插件
订阅小程序
在清言上使用

Untangling Individual Cation Roles in Rock Salt High-Entropy Oxides

ACTA MATERIALIA(2024)

引用 0|浏览12
暂无评分
摘要
We unravel the distinct role each cation plays in phase evolution, stability, and properties within the Mg1/5Co1/5Ni1/5Cu1/5Zn1/5O high-entropy oxide (HEO) by integrating experimental findings, thermodynamic analyses, and first-principles predictions. Our approach is through sequentially removing one cation at a time from the five-component high-entropy oxide to create five four-component derivatives. Bulk synthesis experiments indicate that Mg, Ni, and Co act as rock salt phase stabilizers whereas only Mg and Ni enthalpically enhance single-phase rock salt stability in thin film growth; synthesis conditions dictate whether Co is a rock salt phase stabilizer or destabilizer. By examining the competing phases and oxidation state preferences using pseudo-binary phase diagrams and first-principles calculations, we resolve the stability differences between bulk and thin film for all compositions. We systematically explore HEO macroscopic property sensitivity to cation selection employing both predicted and measured optical spectra. This study establishes a framework for understanding high-entropy oxide synthesizability and properties on a per-cation basis that is broadly applicable to tailoring functional property design in other high-entropy materials.
更多
查看译文
关键词
High-entropy oxides,Thin film growth,Bulk synthesis,Binary phase diagrams,Density functional theory,Linear optical properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要