谷歌浏览器插件
订阅小程序
在清言上使用

Proximity Extension Assay in Cerebrospinal Fluid Identifies Neurofilament Light Chain As Biomarker of Neurodegeneration in Sporadic Cerebral Amyloid Angiopathy

Alzheimer's research & therapy(2024)

引用 0|浏览15
暂无评分
摘要
Abstract Background Sporadic cerebral amyloid angiopathy (sCAA) is a disease characterised by the progressive deposition of the amyloid beta (Aβ) in the cerebral vasculature, capable of causing a variety of symptoms, from (mild) cognitive impairment, to micro- and major haemorrhagic lesions. Modern diagnosis of sCAA relies on radiological detection of late-stage hallmarks of disease, complicating early diagnosis and potential interventions in disease progression. Our goal in this study was to identify and validate novel biomarkers for sCAA. Methods We performed a proximity extension assay (PEA) on cerebrospinal fluid (CSF) samples of sCAA/control participants (n = 34/51). Additionally, we attempted to validate the top candidate biomarker in CSF and serum samples (n = 38/26) in a largely overlapping validation cohort, through analysis with a targeted immunoassay. Results Thirteen proteins were differentially expressed through PEA, with top candidate NFL significantly increased in CSF of sCAA patients (p < 0.0001). Validation analyses using immunoassays revealed increased CSF and serum NFL levels in sCAA patients (both p < 0.0001) with good discrimination between sCAA and controls (AUC: 0.85; AUC: 0.79 respectively). Additionally, the CSF: serum NFL ratio was significantly elevated in sCAA (p = 0.002). Discussion Large-scale targeted proteomics screening of CSF of sCAA patients and controls identified thirteen biomarker candidates for sCAA. Orthogonal validation of NFL identified NFL in CSF and serum as biomarker, capable of differentiating between sCAA patients and controls.
更多
查看译文
关键词
Cerebral amyloid angiopathy,Cerebrospinal fluid,Proteomics,Neurofilament light chain,Proximity extension assay,Biomarkers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要