Three-dimensional spatiotemporal variation of soil organic carbon and its influencing factors at the basin scale

International Soil and Water Conservation Research(2024)

引用 0|浏览8
暂无评分
摘要
The variability of soil organic carbon (SOC) extends across three dimensions. However, quantitative analyses of the factors influencing spatiotemporal variations of SOC at continuous depths have been scarce. This study leverages legacy data from two soil surveys conducted in the Dongting Lake Basin during the 1980s and the 2010s, employing Random Forest models to generate three-dimensional SOC maps. Through correlation analysis and permutation importance, we identified the primary factors driving temporal and spatial changes of SOC. The results showed that in the 2010s, SOC storage up to a depth of 1 m in the Dongting Lake Basin was approximately 2.95 Pg, increasing at an average rate of 0.0047 Pg C per year since the 1980s. Regions with higher average SOC contents were predominantly found in the western, southern, and eastern parts of the basin, despite significant losses over the 30-year period. In contrast, the central and northern areas, which initially had lower SOC contents in the 1980s, exhibited increases by the 2010s. Soil depth was the most influential predictor of SOC patterns in both the 1980s and 2010s. Meanwhile, relief and organism factors were primarily responsible for spatial variations in SOC, with the influence of organism factors diminishing by the 2010s. The temporal variations of SOC were chiefly attributed to changes in soil conservation practices, extreme precipitation events, and grain production. Consequently, it is imperative to prioritize ecological restoration and conservation tillage practices to mitigate the impacts of extreme weather conditions and safeguard food security.
更多
查看译文
关键词
digital soil mapping,Random Forest,climate change,human activities,3D mapping
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要