谷歌浏览器插件
订阅小程序
在清言上使用

TMS-based neurofeedback training of mental finger individuation induces neuroplastic changes in the sensorimotor cortex

Ingrid Angela Odermatt, Manuel Schulthess-Lutz,Ernest Mihelj, Paige Howell,Caroline Heimhofer,Roisin McMackin,Kathy Ruddy,Patrick Freund,Sanne Kikkert,Nicole Wenderoth

crossref(2024)

引用 0|浏览3
暂无评分
摘要
Neurofeedback (NF) training based on motor imagery is increasingly used in neurorehabilitation with the aim to improve motor functions. However, the neuroplastic changes underpinning these improvements are poorly understood. Here, we used mental ‘finger individuation’, i.e., the selective facilitation of single finger representations without producing overt movements, as a model to study neuroplasticity induced by NF. To enhance mental finger individuation, we used transcranial magnetic stimulation (TMS)-based NF training. During motor imagery of individual finger movements, healthy participants were provided visual feedback on the size of motor evoked potentials, reflecting their finger-specific corticospinal excitability. We found that TMS-NF improved the top-down activation of finger-specific representations. First, intracortical inhibitory circuits in the primary motor cortex were tuned after training such that inhibition was selectively reduced for the finger that was mentally activated. Second, motor imagery finger representations in sensorimotor areas assessed with functional MRI became more distinct after training. Together, our results indicate that the neural underpinnings of finger individuation, a well-known model system for neuroplasticity, can be modified using TMS-NF guided motor imagery training. These findings demonstrate that TMS-NF induces neuroplasticity in the sensorimotor system, highlighting the promise of TMS-NF on the recovery of fine motor function. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要