Dual-Mode Patterns Enabled by Photofluidization of an Azobenzene-Containing Linear Liquid Crystal Copolymer

Feng Pan, Yaoqing Feng, Yuyao Qian,Lang Qin,Yanlei Yu

Langmuir(2024)

引用 0|浏览0
暂无评分
摘要
Creating dual-mode patterns in the same area of the material is an advanced method to increase the dimension of information storage, improve the level of encryption security, and promote the development of encoding technology. However, in situ, different patterns may lead to serious mutual interference in the process of manufacturing and usage. New materials and patterning techniques are essential for the advancement of noninterfering dual-mode patterns. Herein, noninterfering dual-mode patterns are demonstrated by combining the structural color and chromatic polarization, which is designed with an azobenzene-containing linear liquid crystal copolymer featuring a photofluidization effect. On the one hand, structural color patterns are imprinted via silicon templates with periodic microstructures after a UV-light-induced local transition of the polymer surface from a glassy to rubbery state. On the other hand, different polarization patterns based on the local photoinduced orientation of mesogens are created within the photofluidized region by the Weigert effect. Especially, the secondary imprinting is used to eliminate the partial damage to the structural color patterns during writing of the polarization patterns, thus obtaining dual-mode patterns without interference. This study provides a blueprint for the creation of advanced materials and sophisticated photopatterning techniques with potential cross-industry applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要