谷歌浏览器插件
订阅小程序
在清言上使用

N-type Molecular Doping of a Semicrystalline Conjugated Polymer Through Cation Exchange

Communications materials(2024)

引用 0|浏览9
暂无评分
摘要
Control of electrical doping is indispensable in any semiconductor device, and both efficient hole and electron doping are required for many devices. In organic semiconductors, however, electron doping has been essentially more problematic compared to hole doping because in general organic semiconductors have low electron affinities and require dopants with low ionization potentials that are often air-sensitive. Here, we adapt an efficient molecular doping method, so-called ion-exchange doping, to dope electrons in a polymeric semiconductor. We initially reduce the polymeric semiconductor using one electron transfer from molecular dopants, and then the ionized dopants in the resulting air-unstable films are replaced with secondary ions via cation exchange. Improved ambient stability and crystallinity of the doped polymeric semiconductors are achieved when a specific bulky molecular cation was chosen as the secondary ion, compared to conventional methods. The presented strategy can overcome the trade-off relationship between reducing capability and ambient stability in molecular dopants, and a wider selection of dopant ions will help to realize ambient-stable electron conductors. It is difficult to control electron doping in organic semiconductors because they often require dopants that are air-sensitive. Here, an ion-exchange doping method is introduced with improved ambient stability and crystallinity of the doped polymeric semiconductors compared to conventional methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要