谷歌浏览器插件
订阅小程序
在清言上使用

A novel acceptor–donor–acceptor structured molecule-based nanosystem for tumor mild photothermal therapy

Journal of Colloid and Interface Science(2024)

引用 0|浏览12
暂无评分
摘要
Although photothermal therapy (PTT) is effective at killing tumor cells, it can inadvertently damage healthy tissues surrounding the tumor. Nevertheless, lowering the treatment temperature will reduce the therapeutic effectiveness. In this study, we employed 2,2′-((2Z,2′Z)-((4,4,9,9-Tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene)) dimalononitrile (IDIC), a molecule possessing a conventional acceptor–donor-acceptor (A-D-A) structure, as a photothermal agent (PTA) to facilitate effective mild photothermal therapy (mPTT). IDIC promotes intramolecular charge transfer under laser irradiation, making it a promising candidate for mPTT. To enhance the therapeutic potential of IDIC, we incorporated quercetin (Qu) into IDIC to form IDIC-Qu nanoparticles (NPs), which can inhibit heat shock protein (HSP) activity during the process of mPTT. Moreover, IDIC-Qu NPs exhibited exceptional water dispersibility and passive targeting abilities towards tumor tissues, attributed to its enhanced permeation and retention (EPR) effect. These advantageous properties position IDIC-Qu NPs as a promising candidate for targeted tumor treatment. Importantly, the IDIC-Qu NPs demonstrated controllable photothermal effects, leading to outstanding in vitro cytotoxicity against cancer cells and effective in vivo tumor ablation through mPTT. IDIC-Qu NPs nano-system enriches the family of organic PTAs and holds significant promise for future clinical applications of mPTT.
更多
查看译文
关键词
Acceptor–donor-acceptor,Photothermal agent,Mild photothermal therapy,Heat shock protein,Tumor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要