谷歌浏览器插件
订阅小程序
在清言上使用

Strain- and Electron Doping-Induced In-Plane Spin Orientation at Room Temperature in Single-Layer CrTe2

Donghui Wang, Xin Wang,Bingxi Hu, Jiaxuan Wang,Yuxiao Zou, Jin Guo,Zezhong Li,Shuting Wang,Yunliang Li,Guofeng Song,Hai Wang,Ying Liu

ACS applied materials & interfaces(2024)

引用 0|浏览6
暂无评分
摘要
Ferromagnets with a Curie temperature surpassing room temperature (RT) are highly sought after for advancing planar spintronics. The ultrathin CrTe2 is proposed as a promising two-dimensional (2D) ferromagnet with a Curie temperature above 300 K. However, its single-layer film is highly susceptible to specific external perturbations, leading to variable magnetic features depending on the environment. The magnetic ordering of single-layer CrTe2 remains a topic of debate, and experimental confirmation of ferromagnetic order at RT is still pending. In our study, we utilized molecular beam epitaxy to create a single-layer 1T-CrTe2 on bilayer graphene, demonstrating ferromagnetism above 300 K with in-plane magnetization through superconducting quantum interference devices (SQUID) measurements. Our density functional theory (DFT) calculations suggest that the ferromagnetic properties stem from epitaxial strain, which increases the distance between adjacent Cr atoms within the layer by about 1.6% and enhances the Cr-Te-Cr angle by approximately 1.6 degrees. Due to its interaction with the graphene substrate, the magnetic moment transitions from an out-of-plane to an in-plane orientation, while electronic doping exceeds 1.5 e/u.c. Combining DFT calculations with in situ scanning tunneling microscopy (STM) characterizations allowed us to determine the configuration of the CrTe2 single layer on graphene. This discovery presents the first experimental proof of ferromagnetic order in single-layer CrTe2 with a Curie temperature above RT, laying the groundwork for future applications of CrTe2 single-layer-based spintronic devices.
更多
查看译文
关键词
intrinsic ferromagnetism,CrTe2/graphene,room temperature,single-layer,in-plane
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要