Chrome Extension
WeChat Mini Program
Use on ChatGLM

Sensing, Communication, and Control Co-design for Energy Efficient Satellite-UAV Networks

CoRR(2024)

Cited 0|Views9
Abstract
Traditional terrestrial communication infrastructures often fail to collect the timely information from Internet of Thing (IoT) devices in remote areas. To address this challenge, we investigate a Satellite-unmanned aerial vehicles (UAV) integrated Non-terrestrial network (NTN), where the UAV is controlled by remote control center via UAV-to-Satellite connections. To maximize the energy efficiency (EE) of the UAV, we optimize the UAV trajectory, power allocation, and state sensing strategies, while guaranteing the control stability and communication reliability. This challenging problem is addressed using an efficient algorithm, incorporating a Deep Q-Network (DQN)-based trajectory determination, a closed form of power allocation, and one-dimensional searching for sensing. Numerical simulations are conducted to validate the effectiveness of our approach. The results showcase the data size of collection has a greater impact than transmission power, and reveal the relationship among sensing interval, communication maximum power and control performance. This study provides promising solutions and valuable insights for efficient data collection in remote IoT.
More
Translated text
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest