Chrome Extension
WeChat Mini Program
Use on ChatGLM

Cross-Modality Program Representation Learning for Electronic Design Automation with High-Level Synthesis

MLCAD '24 Proceedings of the 2024 ACM/IEEE International Symposium on Machine Learning for CAD(2024)

Cited 0|Views11
No score
Abstract
In recent years, domain-specific accelerators (DSAs) have gained popularity for applications such as deep learning and autonomous driving. To facilitate DSA designs, programmers use high-level synthesis (HLS) to compile a high-level description written in C/C++ into a design with low-level hardware description languages that eventually synthesize DSAs on circuits. However, creating a high-quality HLS design still demands significant domain knowledge, particularly in microarchitecture decisions expressed as pragmas. Thus, it is desirable to automate such decisions with the help of machine learning for predicting the quality of HLS designs, requiring a deeper understanding of the program that consists of original code and pragmas. Naturally, these programs can be considered as sequence data. In addition, these programs can be compiled and converted into a control data flow graph (CDFG). But existing works either fail to leverage both modalities or combine the two in shallow or coarse ways. We propose ProgSG, a model that allows interaction between the source code sequence modality and the graph modality in a deep and fine-grained way. To alleviate the scarcity of labeled designs, a pre-training method is proposed based on a suite of compiler's data flow analysis tasks. Experimental results show that ProgSG reduces the RMSE of design performance predictions by up to 22%, and identifies designs with an average of 1.10× and 1.26× (up to 8.17× and 13.31×) performance improvement in design space exploration (DSE) task compared to HARP and AutoDSE, respectively.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined