所有文章 > 正文

KDD 2020 | 可调控的多兴趣推荐框架(作者带你读论文)

作者: 岑宇阔

浏览量: 1847

时间: 2020-08-12 04:33

关键词: KDD,神经网络,多兴趣推荐框架,AI顶会,作者带你读论文

论文:Controllable Multi-Interest Framework for Recommendation;作者:Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, Hongxia Yang, Jie Tang;会议:In Proceedings of the Twenty-Sixth ACM SIGKDD International&hellip

论文:Controllable Multi-Interest Framework for Recommendation

作者:Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, Hongxia Yang, Jie Tang

会议:In Proceedings of the Twenty-Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'20)

Code link: https://github.com/THUDM/ComiRec 

神经网络模型目前已经被广泛地应用于各种推荐系统中。这些基于神经网络的推荐算法通常只会从用户的行为序列中学习到一个用户表征向量,但是这个统一的表征向量往往无法反映用户在一段时期内的多种不同的兴趣。以下图为例,用户 Emma 的商品点击序列反映了她近期三种不同的兴趣,包括珠宝、手提包和化妆品。我们提出了一种可调控的多兴趣推荐框架来解决这种情形。多兴趣抽取模块会从用户的点击序列中捕获到用户多种不同的兴趣,然后可以用来召回一些相似的商品。聚合模块会将这些不同兴趣召回的商品整合起来作为推荐的候选商品,供下游的任务来使用。

对于多兴趣抽取模块,我们在 2 个公开数据集 Amazon 和 Taobao 数据集上进行了实验,验证了我们所提出的模型的有效性。如下表所示,在 2 个数据集上,我们提出的 ComiRec-SA/DR 取得了最好的效果(SA 表示基于自注意力的方法,DR 表示基于动态路由的方法)。

我们基于一个实际用户进行了案例分析。我们的多兴趣抽取模块从用户的历史点击序列中学习到了用户近期的四种不同的兴趣,包括甜品、礼物盒、手机壳以及小配件。左侧是用户点击过的商品,右侧是对应的兴趣表征从大规模商品池中召回回来的一些商品。

References:

[1] Li, Chao, et al. "Multi-interest network with dynamic routing for recommendation at Tmall." Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019.

[2] Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. "Dynamic routing between capsules." Advances in neural information processing systems. 2017.

相关阅读

ACL 2020最佳论文:一种全新的NLP模型测试方法CheckList

ECCV 2020 | 商汤联合浙大提出多人场景人体绝对三维姿态估计新方法

ACL 2020 | 北大学姐博士阶段收官之作ACL2020-低资源场景下的对话系统任务模型定制

[关于转载]:本文为“AMiner”官网文章。转载本文请联系原作者获取授权,转载仅限全文转载并保留文章标题及内容,不得删改、添加内容绕开原创保护,且文章开头必须注明:转自“AMiner”官网。谢谢您的合作。

扫码微信阅读
[关于转载]:本文转载于岑宇阔,仅用于学术分享,有任何问题请与我们联系:report@aminer.cn。