基本信息
浏览量:115

个人简介
Research Profile
At the Open Heat Lab, we explore and share anything with an interesting thermal aspect. Challenges abound in key areas such as energy and environment, electronics and optoelectronics, advanced manufacturing and robotics, biomedical engineering, high-temperature superconductivity, quantum materials and computing, neuromorphic computing, and space exploration. As our ability to see, simulate, design, measure, and manipulate matter at small spatial and temporal scales continues to evolve, the rich dynamics of various heat carriers offers unprecedented opportunities for understanding, controlling and utilizing heat. We focus on the intersections of thermal science, nanotechnology, and ultrafast physics. Directions for the near future include thermal radiation, heat in solids, and biothermal processes. We strive to probe fundamentals and push limits. Examples include the coherent, hydrodynamic and quantum nature of heat, the intelligent control of heat flow, as well as the limits to heat transfer rates, storage density, and pumping and conversion efficiency. Heat transport mediated by photons, phonons, electrons, ions, magnons, and other quasiparticles, in low-dimensional, nanostructured, phase-change, quasiperiodic, topological and soft materials is all of interest. Central to our research are a range of custom-developed experimental platforms, a series of micro/nanofabricated calorimeters and scanning probes, and a suite of table-top ultrafast laser pump-probe techniques. In addition, commercial equipment such as ultrahigh-vacuum scanning probe microscopes and large shared facilities such as X-ray free-electron lasers will prove instrumental. Along with cutting-edge experiments, state-of-the-art computational approaches including electrodynamic modeling, first-principles simulations, and machine learning are closely incorporated.
At the Open Heat Lab, we explore and share anything with an interesting thermal aspect. Challenges abound in key areas such as energy and environment, electronics and optoelectronics, advanced manufacturing and robotics, biomedical engineering, high-temperature superconductivity, quantum materials and computing, neuromorphic computing, and space exploration. As our ability to see, simulate, design, measure, and manipulate matter at small spatial and temporal scales continues to evolve, the rich dynamics of various heat carriers offers unprecedented opportunities for understanding, controlling and utilizing heat. We focus on the intersections of thermal science, nanotechnology, and ultrafast physics. Directions for the near future include thermal radiation, heat in solids, and biothermal processes. We strive to probe fundamentals and push limits. Examples include the coherent, hydrodynamic and quantum nature of heat, the intelligent control of heat flow, as well as the limits to heat transfer rates, storage density, and pumping and conversion efficiency. Heat transport mediated by photons, phonons, electrons, ions, magnons, and other quasiparticles, in low-dimensional, nanostructured, phase-change, quasiperiodic, topological and soft materials is all of interest. Central to our research are a range of custom-developed experimental platforms, a series of micro/nanofabricated calorimeters and scanning probes, and a suite of table-top ultrafast laser pump-probe techniques. In addition, commercial equipment such as ultrahigh-vacuum scanning probe microscopes and large shared facilities such as X-ray free-electron lasers will prove instrumental. Along with cutting-edge experiments, state-of-the-art computational approaches including electrodynamic modeling, first-principles simulations, and machine learning are closely incorporated.
研究兴趣
论文作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
作者统计
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn