Mechanisms for Ethanol Electrooxidation on Pt(111) and Adsorption Bond Strengths Defining an Ideal Catalyst

JOURNAL OF THE ELECTROCHEMICAL SOCIETY(2015)

引用 36|浏览2
暂无评分
摘要
Ethanol electrooxidation on the Pt(111) electrode has been studied with computational theory. Using a solvation model and a modified Poison-Boltzmann theory for electrolyte polarization, standard reversible potentials for forming 17 reaction intermediates in solution were calculated with density functional theory. Reversible potentials for adsorbed intermediates were then determined by inputting calculated adsorption energies into a linear Gibbs energy relationship. A path to CO2 was found where surface potentials were low and close to the calculated 0.004 V reversible potential for the 12 electron oxidation of ethanol. An exception was the 0.49 V potential for forming the OH(ads) from H2O(l), this being required for oxidation of CO(ads) and RH(ads) intermediates. The surface potentials show that acetyl, OCCH3(ads) forms at small positive potentials and decomposes to CH(ads), CH3(ads), and CO(ads), which poison the surface at these potentials. Energy losses due to non-electron transfer reaction steps are small and cause a small shift in the reversible potential for the 12 electron oxidation. Values for adsorption bond strengths over a perfect catalyst were determined. It is concluded that on an ideal catalyst most intermediates will adsorb more weakly and OH more strongly than on Pt(111). (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要