A Multidisciplinary Approach to Designing and Evaluating Electronic Medical Record Portal Messages That Support Patient Self-Care
Journal of Biomedical Informatics(2017)
Abstract
We describe a project intended to improve the use of Electronic Medical Record (EMR) patient portal information by older adults with diverse numeracy and literacy abilities, so that portals can better support patient-centered care. Patient portals are intended to bridge patients and providers by ensuring patients have continuous access to their health information and services. However, they are underutilized, especially by older adults with low health literacy, because they often function more as information repositories than as tools to engage patients. We outline an interdisciplinary approach to designing and evaluating portal-based messages that convey clinical test results so as to support patient-centered care. We first describe a theory-based framework for designing effective messages for patients. This involves analyzing shortcomings of the standard portal message format (presenting numerical test results with little context to guide comprehension) and developing verbally, graphically, video- and computer agent-based formats that enhance context. The framework encompasses theories from cognitive and behavioral science (health literacy, fuzzy trace memory, behavior change) as well as computational/engineering approaches (e.g., image and speech processing models). We then describe an approach to evaluating whether the formats improve comprehension of and responses to the messages about test results, focusing on our methods. The approach combines quantitative (e.g., response accuracy, Likert scale responses) and qualitative (interview) measures, as well as experimental and individual difference methods in order to investigate which formats are more effective, and whether some formats benefit some types of patients more than others. We also report the results of two pilot studies conducted as part of developing the message formats.
MoreTranslated text
Key words
Cognition,Learning,Patient portal,Electronic Medical Record,Aging,Computer agent
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined