Enhanced Chromatin Accessibility Of The Dosage Compensated Drosophila Mleale X-Chromosome Requires The Clamp Zinc Finger Protein

PLOS ONE(2017)

引用 23|浏览19
暂无评分
摘要
The essential process of dosage compensation is required to equalize gene expression of X-chromosome genes between males (XY) and females (XX). In Drosophila, the conserved Male-specific lethal (MSL) histone acetyltransferase complex mediates dosage compensation by increasing transcript levels from genes on the single male X-chromosome approximately two-fold. Consistent with its increased levels of transcription, the male X-chromosome has enhanced chromatin accessibility, distinguishing it from the autosomes. Here, we demonstrate that the non-sex-specific CLAMP (Chromatin-linked adaptor for MSL proteins) zinc finger protein that recognizes GA-rich sequences genome-wide promotes the specialized chromatin environment on the male X-chromosome and can act over long genomic distances (similar to 14 kb). Although MSL complex is required for increasing transcript levels of X-linked genes, it is not required for enhancing global male X-chromosome chromatin accessibility, and instead works cooperatively with CLAMP to facilitate an accessible chromatin configuration at its sites of highest occupancy. Furthermore, CLAMP regulates chromatin structure at strong MSL complex binding sites through promoting recruitment of the Nucleosome Remodeling Factor (NURF) complex. In contrast to the X-chromosome, CLAMP regulates chromatin and gene expression on autosomes through a distinct mechanism that does not involve NURF recruitment. Overall, our results support a model where synergy between a non-sex-specific transcription factor (CLAMP) and a sex-specific cofactor (MSL) creates a specialized chromatin domain on the male X-chromosome.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要