Survey of Higher Order Rigid Body Motion Interpolation Methods for Keyframe Animation and Continuous-Time Trajectory Estimation

2018 International Conference on 3D Vision (3DV)(2018)

引用 37|浏览49
暂无评分
摘要
In this survey we carefully analyze the characteristics of higher order rigid body motion interpolation methods to obtain a continuous trajectory from a discrete set of poses. We first discuss the tradeoff between continuity, local control and approximation of classical Euclidean interpolation schemes such as Bezier and B-splines. The benefits of the manifold of unit quaternions SU(2), a double-cover of rotation matrices SO(3), as rotation parameterization are presented, which allow for an elegant formulation of higher order orientation interpolation with easy analytic derivatives, made possible through the Lie Algebra su(2) of pure quaternions and the cumulative form of cubic B-splines. The same construction scheme is then applied for joint interpolation in the full rigid body pose space, which had previously been done for the matrix representation SE(3) and its twists, but not for the more efficient unit dual quaternion DH1 and its screw motions. Both suffer from the effects of coupling translation and rotation that have mostly been ignored by previous work. We thus conclude that split interpolation in ℝ 3 × SU(2) is preferable for most applications. Our final runtime experiments show that joint interpolation in SE(3) is 2 times and in DH 1 1.3 times slower - which furthermore justifies our suggestion from a practical point of view.
更多
查看译文
关键词
rigid body motion,interpolation methods,keyframe animation,trajectory estimation,Bezier curve,B-spline,dual quaternions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要