Quokka: a comprehensive tool for rapid and accurate prediction of kinase family-specific phosphorylation sites in the human proteome.

BIOINFORMATICS(2018)

引用 136|浏览70
暂无评分
摘要
Motivation: Kinase-regulated phosphorylation is a ubiquitous type of post-translational modification (PTM) in both eukaryotic and prokaryotic cells. Phosphorylation plays fundamental roles in many signalling pathways and biological processes, such as protein degradation and protein-protein interactions. Experimental studies have revealed that signalling defects caused by aberrant phosphorylation are highly associated with a variety of human diseases, especially cancers. In light of this, a number of computational methods aiming to accurately predict protein kinase family-specific or kinase-specific phosphorylation sites have been established, thereby facilitating phosphoproteomic data analysis. Results: In this work, we present Quokka, a novel bioinformatics tool that allows users to rapidly and accurately identify human kinase family-regulated phosphorylation sites. Quokka was developed by using a variety of sequence scoring functions combined with an optimized logistic regression algorithm. We evaluated Quokka based on well-prepared up-to-date benchmark and independent test datasets, curated from the Phospho. ELM and UniProt databases, respectively. The independent test demonstrates that Quokka improves the prediction performance compared with state-of-the-art computational tools for phosphorylation prediction. In summary, our tool provides users with high-quality predicted human phosphorylation sites for hypothesis generation and biological validation.
更多
查看译文
关键词
phosphorylation,human proteome,family-specific
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要