谷歌浏览器插件
订阅小程序
在清言上使用

Fe3O4-Decorated Porous Graphene Interlayer for High-Performance Lithium-Sulfur Batteries

ACS APPLIED MATERIALS & INTERFACES(2018)

引用 127|浏览4
暂无评分
摘要
Lithium-sulfur (Li-S) batteries are seriously restrained by the shuttling effect of intermediary products and their further reduction on the anode surface. Considerable researches have been devoted to overcoming these issues by introducing carbon-based materials as the sulfur host or interlayer in the Li-S systems. Herein, we constructed a multifunctional interlayer on a separator by inserting Fe3O4 nanoparticles (NPs) in a porous graphene (PG) film to immobilize polysulfides effectively. The porous structure of graphene was optimized by controlling the oxidation conditions for facilitating ion transfer. The polar Fe3O4 NPs were employed to trap sulfur species via strong chemical interaction. By exploiting the PG-Fe3O4 interlayer with optimal porous structure and component, the Li-S battery delivered a superior cycling performance and rate capability. The reversible discharge capacity could be maintained at 732 mAh g(-1) after 500 cycles and 356 mAh g(-1) after total 2000 cycles at 1 C with a final capacity retention of 49%. Moreover, a capacity of 589 mAh g(-1) could also be maintained even at 2 C rate.
更多
查看译文
关键词
Fe3O4 nanoparticles,porous graphene,interlayer,multifunctional,lithium-sulfur batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要