Breaking the Trust Dependence on Third Party Processes for Reconfigurable Secure Hardware.

FPGA(2019)

引用 19|浏览71
暂无评分
摘要
Modern CPU designs are beginning to incorporate secure hardware features, but leave developers with little control over both the set of features and when and whether updates are available. Reconfigurable logic (e.g., FPGAs) has been proposed as an alternative as it is both hardware, so can have similar capabilities at a reasonable performance degradation, and programmable, allowing customization of the secure hardware. This programmability, however, opens new attack vectors that allow an adversary to re-program the FPGA. Past attempts to solve this rely on a party maintaining a shared key with the FPGA, but these business processes to keep that key secret have been shown to be quite vulnerable. In this paper, we propose a new mechanism which eliminates the trust dependence on third party processes. This new mechanism consists of a self-provisioning stage, where keys are generated internal to the FPGA and never exposed externally, coupled with a secure update mechanism which allows updates to be governed by a policy defined by the secure hardware application. To demonstrate, we fully implemented these mechanisms on a Xilinx Zynq UltraScale+ FPGA along with an example secure co-processor with remote attestation with a flexible root of trust (in contrast to Intel SGX which fixes the root of trust to be Intel). Our performance evaluation of two applications, a password manager and a contact matching application, illustrates using FPGAs is practical.
更多
查看译文
关键词
Secure Hardware, FPGA, Trusted Execution Environment, SGX
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要