Strain, Stress, And Mechanical Relaxation In Fin-Patterned Si/Sige Multilayers For Sub-7nm Nanosheet Gate-All-Around Device Technology

APPLIED PHYSICS LETTERS(2018)

引用 26|浏览63
暂无评分
摘要
Pre-strained fin-patterned Si/SiGe multilayer structures for sub-7 nm stacked gate-all-around Si-technology transistors that have been grown onto bulk-Si, virtually relaxed SiGe, strained Silicon-On-Insulator, and compressive SiGe-On-Insulator were investigated. From strain maps with a nanometer spatial resolution obtained by transmission electron microscopy, we developed 3D quantitative numerical models describing the mechanics of the structures. While elastic interactions describe every other system reported here, the patterning on the compressive SiGe-On-Insulator substrate that is fabricated by Ge-condensation results in relaxation along the semiconductor/insulator interface, revealing a latent plasticity mechanism. As a consequence, Si layers with a uniaxial stress of 1.4GPa are obtained, bringing fresh perspectives for strain engineering in advanced devices. These findings could be extended to other semiconductor technologies. Published by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要