Alkene Insertions into a Ru–PR2 Bond

Organometallics(2016)

引用 12|浏览12
暂无评分
摘要
An unusually broad series of discrete alkene insertion reactions has provided the opportunity to examine the mechanism(s) of this fundamental carbon–heteroatom bond-forming process. Ethylene, electron-rich and electron-poor (activated) alkenes all react with the Ru–P double bond in Ru­(η5-indenyl)­(PCy2)­(PPh3) to form κ2-ruthenaphosphacyclo­butanes. Thermal decomposition of these metallacycles in solution, via alkene deinsertion and β-hydride elimination, is particularly favored for electron-rich alkenes, and hydride-containing decomposition products are implicit intermediates in the observed isomerization of 1-hexene. Kinetic studies, including a Hammett analysis of the insertion reactions of para-substituted styrenes, suggest that two distinct inner-sphere pathways operate for the insertion of electron-rich versus activated alkenes. DFT analyses have identified one pathway involving simple cycloaddition via a four-centered transition state and another that proceeds through an η2-alkene intermediate. Such an intermediate was observed spectroscopically during formation of the ethylene metallacycle, but not for substituted alkenes. We propose that “pre-polarized”, activated alkenes participate in direct cycloaddition, while rate-determining η2-adduct formation is necessary for the activation of electron-rich alkenes toward migratory insertion into the Ru–P bond.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要