Partial Label Learning by Semantic Difference Maximization.

IJCAI(2019)

引用 68|浏览63
暂无评分
摘要
Partial label learning is a weakly supervised learning framework, in which each instance is provided with multiple candidate labels while only one of them is correct. Most of the existing approaches focus on leveraging the instance relationships to disambiguate the given noisy label space, while it is still unclear whether we can exploit potentially useful information in label space to alleviate the label ambiguities. This paper gives a positive answer to this question for the first time. Specifically, if two instances do not share any common candidate labels, they cannot have the same ground-truth label. By exploiting such dissimilarity relationships from label space, we propose a novel approach that aims to maximize the latent semantic differences of the two instances whose ground-truth labels are definitely different, while training the desired model simultaneously, thereby continually enlarging the gap of label confidences between two instances of different classes. Extensive experiments on artificial and real-world partial label datasets show that our approach significantly outperforms state-of-the-art counterparts.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要