Imaging neuromodulators with high spatiotemporal resolution using genetically encoded indicators

NATURE PROTOCOLS(2019)

引用 29|浏览39
暂无评分
摘要
Multiple aspects of neural activity, from neuronal firing to neuromodulator release and signaling, underlie brain function and ultimately shape animal behavior. The recently developed and constantly growing toolbox of genetically encoded sensors for neural activity, including calcium, voltage, neurotransmitter and neuromodulator sensors, allows precise measurement of these signaling events with high spatial and temporal resolution. Here, we describe the engineering, characterization and application of our recently developed dLight1, a suite of genetically encoded dopamine (DA) sensors based on human inert DA receptors. dLight1 offers high molecular specificity, requisite affinity and kinetics and great sensitivity for measuring DA release in vivo. The detailed workflow described in this protocol can be used to systematically characterize and validate dLight1 in increasingly intact biological systems, from cultured cells to acute brain slices to behaving mice. For tool developers, we focus on characterizing five distinct properties of dLight1: dynamic range, affinity, molecular specificity, kinetics and interaction with endogenous signaling; for end users, we provide comprehensive step-by-step instructions for how to leverage fiber photometry and two-photon imaging to measure dLight1 transients in vivo. The instructions provided in this protocol are designed to help laboratory personnel with a broad range of experience (at the graduate or post-graduate level) to develop and utilize novel neuromodulator sensors in vivo, by using dLight1 as a benchmark.
更多
查看译文
关键词
Fluorescence imaging,Molecular neuroscience,Neurotransmitters,Sensors and probes,Synaptic vesicle exocytosis,Life Sciences,general,Biological Techniques,Analytical Chemistry,Microarrays,Computational Biology/Bioinformatics,Organic Chemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要