Evolutionary multi-objective optimization and Pareto-frontal uncertainty quantification of interatomic forcefields for thermal conductivity simulations.

Computer Physics Communications(2020)

引用 8|浏览14
暂无评分
摘要
Predictive Molecular Dynamics simulations of thermal transport require forcefields that can simultaneously reproduce several structural, thermodynamic and vibrational properties of materials like lattice constants, phonon density of states, and specific heat. This requires a multi-objective optimization approach for forcefield parameterization. Existing methodologies for forcefield parameterization use ad-hoc and empirical weighting schemes to convert this into a single-objective optimization problem. Here, we provide and describe software to perform multi-objective optimization of Stillinger–Weber forcefields (SWFF) for two-dimensional layered materials using the recently developed 3rd generation non-dominated sorting genetic algorithm (NSGA-III). NSGA-III converges to the set of optimal forcefields lying on the Pareto front in the multi-dimensional objective space. This set of forcefields is used for uncertainty quantification of computed thermal conductivity due to variability in the forcefield parameters. We demonstrate this new optimization scheme by constructing a SWFF for a representative two-dimensional material, 2H-MoSe2 and quantifying the uncertainty in their computed thermal conductivity.
更多
查看译文
关键词
Thermal conductivity,Molecular dynamics,Forcefield parameterization,Genetic algorithm,Multi-objective optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要