Chrome Extension
WeChat Mini Program
Use on ChatGLM

Chaotrope-Controlled Fabrication of Ferritin-Salvianolic Acid B- Epigallocatechin Gallate Three-Layer Nanoparticle by the Flexibility of Ferritin Channels

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY(2021)

Cited 7|Views14
No score
Abstract
Phytoferritin has a natural cagelike architecture for carrying bioactive molecules, and it is uniquely suited to function as a carrier due to its multiple interfaces and channels. In this study, a novel approach was proposed to prepare ferritin-salvianolic acid B-epigallocatechin gallate (EGCG) three-layer nanoparticles (FSE) through the steric hindrance of ferritin channels. Urea (30 mM) could expand the ferritin channel size evidenced by the improved iron release rate v(o) and promote the EGCG penetration into the ferritin cavity without disassembly of the ferritin cage. The encapsulation ratio of EGCG was 16.0 +/- 0.14% (w/w). Salvianolic acid B attached to the outer interface of ferritin through weak bonds with a binding constant of (2.91 +/- 0.04) X 10(5) M-1. The FSE maintained a spherical structure with a diameter of 12 nm. Moreover, when subjected to heat (40-70 degrees C) there was a significant increase in the stability of EGCG in the FSE due to the binding of salvianolic acid B. Through this interesting approach, two molecules are simultaneously attached and encapsulated in ferritin in a multilayer form under moderate conditions, which is conducive to the protection of unstable molecules for potential encapsulation and delivery utilization.
More
Translated text
Key words
ferritin channel, bioactive molecules, urea, steric hindrance, multilayer
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined