Bicarbonate modulates delafloxacin activity against MDR Staphylococcus aureus and Pseudomonas aeruginosa

JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY(2022)

引用 3|浏览4
暂无评分
摘要
Objectives To investigate the utility of recently approved delafloxacin and other fluoroquinolones against leading MDR bacterial pathogens under physiologically relevant conditions. Methods MIC and MBC assays were conducted for MDR strains of Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae in the standard antibiotic susceptibility testing medium CAMHB, amended Roswell-Park Memorial Institute tissue culture medium (RPMI+) or 20% fresh human whole blood. In vivo correlation of in vitro findings was performed in a murine P. aeruginosa pneumonia model. Mechanistic bases for the findings were explored by altering media conditions and with established fluoroquinolone accumulation assays. Results Fluoroquinolone MICs were increased in RPMI+ compared with CAMHB for all four MDR pathogens. Specifically, delafloxacin MICs were increased 32-fold versus MDR S. aureus and 8-fold versus MDR P. aeruginosa. MBC assays in 20% human whole blood and a murine MDR P. aeruginosa pneumonia model both confirmed that delafloxacin activity was reduced under physiological conditions. Bicarbonate (HCO3-), a key component of host physiology found in RPMI+ but absent from CAMHB, dictated delafloxacin susceptibility in CAMHB and RPMI+ by impairing its intracellular accumulation. Conclusions Standard in vitro antibiotic susceptibility testing conditions overpredicted the effectiveness of delafloxacin against MDR pathogens by failing to capture the role of the biological buffer HCO3- to impair delafloxacin accumulation. This work showcases limitations of our current antibiotic susceptibility testing paradigm and highlights the importance of understanding host microenvironmental conditions that impact true clinical efficacy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要