Regulation of Fetal Hemoglobin Expression By the VHL-HIF1α Oxygen Sensing System

Blood(2021)

引用 4|浏览28
暂无评分
摘要
Defining the mechanisms that control the perinatal switch from γ-globin (HBG1 and HBG2) to β-globin (HBB) gene expression in human red blood cells (RBCs) has informed novel approaches to reactivate fetal hemoglobin (HbF, α2γ2) therapeutically for sickle cell disease and β-thalassemia. However, one longstanding unsolved problem is to explain how HbF becomes elevated in conditions such as blood loss, hypoxia and hemolysis. These conditions are associated with accelerated RBC production, also referred to as stress erythropoiesis, driven by activation of hypoxia-inducible factor (HIF) via a canonical O 2 sensing pathway. At high O 2 levels (“normoxia”), O 2-dependent prolyl hydroxylase domain (PHD) enzymes hydroxylate HIFα, thereby targeting it for ubiquitination by the von Hippel-Lindau (VHL) E3 ubiquitin ligase complex, followed by proteasomal degradation. At low O 2 tension (hypoxia), PHD activity is reduced, causing HIF1α to accumulate, dimerize with constitutively expressed HIF1β, and bind hypoxia response elements (HREs) to activate a broad array of genes that facilitate hypoxic adaptation. We identified VHL and HIF1α, as negative and positive regulators of HbF expression, respectively.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要