How Peripheral Vestibular Damage Affects Velocity Storage: a Causative Explanation

Journal of the Association for Research in Otolaryngology(2022)

引用 3|浏览10
暂无评分
摘要
Velocity storage is a centrally-mediated mechanism that processes peripheral vestibular inputs. One prominent aspect of velocity storage is its effect on dynamic responses to yaw rotation. Specifically, when normal human subjects are accelerated to constant angular yaw velocity, horizontal eye movements and perceived angular velocity decay exponentially with a time constant circa 15–30 s, even though the input from the vestibular periphery decays much faster (~ 6 s). Peripheral vestibular damage causes a time constant reduction, which is useful for clinical diagnoses, but a mechanistic explanation for the relationship between vestibular damage and changes in these behavioral dynamics is lacking. It has been hypothesized that Bayesian optimization determines ideal velocity storage dynamics based on statistics of vestibular noise and experienced motion. Specifically, while a longer time constant would make the central estimate of angular head velocity closer to actual head motion, it may also result in the accumulation of neural noise which simultaneously degrades precision. Thus, the brain may balance these two effects by determining the time constant that optimizes behavior. We applied a Bayesian optimal Kalman filter to determine the ideal velocity storage time constant for unilateral damage. Predicted time constants were substantially lower than normal and similar to patients. Building on our past work showing that Bayesian optimization explains age-related changes in velocity storage, we also modeled interactions between age-related hair cell loss and peripheral damage. These results provide a plausible mechanistic explanation for changes in velocity storage after peripheral damage. Results also suggested that even after peripheral damage, noise originating in the periphery or early central processing may remain relevant in neurocomputations. Overall, our findings support the hypothesis that the brain optimizes velocity storage based on the vestibular signal-to-noise ratio.
更多
查看译文
关键词
unilateral, time constant, Bayesian optimization, precision, noise, human
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要