Chrome Extension
WeChat Mini Program
Use on ChatGLM

Analog Layout Automation On Advanced Process Technologies

ISPD '23: Proceedings of the 2023 International Symposium on Physical Design(2023)

Cited 0|Views14
No score
Abstract
Despite the digitization of analog and the disaggregated silicon trends, high-volume or high-performance system-on-chip (SoC) designs integrate numerous analog and mixed-signal (AMS) intellectual property (IP) blocks including voltage regulators, clock generators, sensors, memory and other interfaces. For example, fine-grain dynamic voltage and frequency scaling requires a dedicated clock generator and voltage regulator per compute unit. The design of these blocks in advanced FinFET or GAAFET technologies is challenging due to the i) increasing gap between schematic and post-layout simulation, ii) design rule complexity, and iii) strict reliability rules [1]. The convergence of a high-performance or a high-power block may require multiple iterations of circuit sizing and layout changes. As a result, physical design, which is primarily a manual effort, has become a key bottleneck in the design process. Migrating these blocks across process technologies or process variants only exacerbates the problem. Layout synthesis for AMS IP blocks is an on-going research problem with a long history [2] and is gaining more attention recently to leverage the latest advances in machine learning [3]. Yet neither template nor optimization-based approaches have reduced the burden significantly for high performance products on leading process technologies. This talk will first overview physical design of AMS IP blocks on an advanced process technology highlighting the opportunities and the expectations from layout automation during this process. On a new process technology, this process starts with conducting early layout studies on a selection of critical high performance or high power subcircuits. In parallel, the IP blocks are placed in a bottom-up fashion to optimize the IP floorplan but also to provide information to SoC floorplanning. Routing follows the placement to verify the post-layout performance. A quick turnaround during these explorations is vital to decide on any architectural changes or circuit re-sizing. The rest of the talk will share experiences with piloting an open-source analog layout synthesis tool flow [4] on a 22nm FinFET technology for voltage regulators [5]. The learnings from this exercise and the extensions to the tool flow will be summarized that include Boolean satisfiability-based routing algorithm, formally verifiable constraint language and leveraging parameterized and standard cells. The talk will conclude with opportunities for research.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined