Effect of oil exposure stages on the heat resistance of Salmonella enterica serovar Enteritidis phage type 30 in peanut flour

Food Microbiology(2023)

引用 0|浏览10
暂无评分
摘要
The oil in low-moisture foods (LMFs) shows protective effects on bacteria during thermal processing. However, the circumstances under which this protective effect strengthens remain unclear. This study aimed to understand which step of the oil exposure to bacterial cells (inoculation, isothermal inactivation, or recovery and enumeration step) in LMFs can enhance their heat resistance. Peanut flour (PF) and defatted PF (DPF) were selected as the oil-rich and oil-free LMF models. Salmonella enterica Enteritidis Phage Type 30 (S. Enteritidis) was inoculated into four designated PF groups representing different oil exposure stages. It was isothermally treated to obtain heat resistance parameters. At a constant moisture content (aw,25°C = 0.32 ± 0.02) and controlled aw,85°C (0.32 ± 0.02), S. Enteritidis exhibited significantly high (p < 0.05) D values in oil-rich sample groups. For instance, the heat resistance values of S. Enteritidis in the PF-DPF and DPF-PF groups were D80°C of 138.22 ± 7.45 min and 101.89 ± 7.82 min; however, the D80°C in the DPF-DPF group was 34.54 ± 2.07 min. The oil addition after the thermal treatment also helped injured bacterial recovery in the enumeration. For instance, the D80°C, D85°C, and D90°C values in the DFF-DPF oil groups were 36.86 ± 2.30, 20.65 ± 1.23, and 7.91 ± 0.52 min, respectively, which were higher than those in the DPF-DPF group at 34.54 ± 2.07, 17.87 ± 0.78, and 7.10 ± 0.52 min. We confirmed that the oil protected S. Enteritidis in PF in all three stages: desiccation process, heat treatment, and recovery of bacterial cells in plates.
更多
查看译文
关键词
heat resistance,oil exposure stages,flour
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要