Real-Time Neural BRDF with Spherically Distributed Primitives

Yishun Dou,Zhong Zheng, Qiaoqiao Jin,Bingbing Ni, Yugang Chen, Junxiang Ke

arXiv (Cornell University)(2023)

引用 0|浏览31
暂无评分
摘要
We propose a novel compact and efficient neural BRDF offering highly versatile material representation, yet with very-light memory and neural computation consumption towards achieving real-time rendering. The results in Figure 1, rendered at full HD resolution on a current desktop machine, show that our system achieves real-time rendering with a wide variety of appearances, which is approached by the following two designs. On the one hand, noting that bidirectional reflectance is distributed in a very sparse high-dimensional subspace, we propose to project the BRDF into two low-dimensional components, i.e., two hemisphere feature-grids for incoming and outgoing directions, respectively. On the other hand, learnable neural reflectance primitives are distributed on our highly-tailored spherical surface grid, which offer informative features for each component and alleviate the conventional heavy feature learning network to a much smaller one, leading to very fast evaluation. These primitives are centrally stored in a codebook and can be shared across multiple grids and even across materials, based on the low-cost indices stored in material-specific spherical surface grids. Our neural BRDF, which is agnostic to the material, provides a unified framework that can represent a variety of materials in consistent manner. Comprehensive experimental results on measured BRDF compression, Monte Carlo simulated BRDF acceleration, and extension to spatially varying effect demonstrate the superior quality and generalizability achieved by the proposed scheme.
更多
查看译文
关键词
spherically,real-time
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络