Chrome Extension
WeChat Mini Program
Use on ChatGLM

稀疏阵列的鲁棒矩阵填充DOA估计算法

ZHANG Yunmeng,DONG Mei,CHEN Boxiao

2023 6th International Conference on Information Communication and Signal Processing (ICICSP)(2023)

National Key Laboratory of Radar Signal Processing

Cited 0|Views7
Abstract
稀疏阵列布阵灵活,增大阵列孔径的同时还能减少阵元间耦合,但基于稀疏阵列的传统波达方向估计会导致角度模糊混叠,带来估计精度差和稳健性不足的问题。针对以上问题,提出一种适用于稀疏阵列波达方向估计的加权截断奇异值投影(weighted truncated singular value projection, WT-SVP)的鲁棒矩阵填充算法。在填充迭代过程中根据奇异值的大小分配权重,突出大奇异值包含的阵列信息,减少小奇异值中不必要的噪声信息,从而优化传统奇异值投影算法。该算法可以实现稀疏阵列的孔洞信息恢复,对不连续阵元充分利用,同时WT-SVP填充算法实现了稀疏阵列波达方向估计的高精度、高分辨以及在低信噪比、低快拍时的高鲁棒性。
More
Translated text
Key words
sparse array,matrix completion,singular value projection,direction of arrival(DOA)estimation
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本文提出了一种加权截断奇异值投影(WT-SVP)的稳健矩阵填充算法,用于提高稀疏阵列方向估计(DOA)的准确性和鲁棒性。

方法】:通过在矩阵填充迭代过程中根据奇异值大小分配权重,突出大奇异值包含的阵列信息并减少小奇异值中的不必要权重,优化了传统的奇异值投影算法。

实验】:在低信噪比和低快照数条件下,使用该算法对稀疏阵列进行了DOA估计,实验结果表明算法在准确性、分辨率和鲁棒性方面表现优越,具体数据集名称未提及。