Building Minimal and Reusable Causal State Abstractions for Reinforcement Learning

AAAI 2024(2024)

引用 0|浏览24
暂无评分
摘要
Two desiderata of reinforcement learning (RL) algorithms are the ability to learn from relatively little experience and the ability to learn policies that generalize to a range of problem specifications. In factored state spaces, one approach towards achieving both goals is to learn state abstractions, which only keep the necessary variables for learning the tasks at hand. This paper introduces Causal Bisimulation Modeling (CBM), a method that learns the causal relationships in the dynamics and reward functions for each task to derive a minimal, task-specific abstraction. CBM leverages and improves implicit modeling to train a high-fidelity causal dynamics model that can be reused for all tasks in the same environment. Empirical validation on two manipulation environments and four tasks reveals that CBM's learned implicit dynamics models identify the underlying causal relationships and state abstractions more accurately than explicit ones. Furthermore, the derived state abstractions allow a task learner to achieve near-oracle levels of sample efficiency and outperform baselines on all tasks.
更多
查看译文
关键词
ML: Reinforcement Learning,ML: Causal Learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要