Neuronal potassium channel activity triggers initiation of mRNA translation through binding of translation regulators.

Taylor J Malone,Jing Wu,Yalan Zhang,Pawel Licznerski, Rongmin Chen, Sheikh Nahiyan, Maysam Pedram,Elizabeth A Jonas,Leonard K Kaczmarek

bioRxiv : the preprint server for biology(2024)

引用 0|浏览0
暂无评分
摘要
Neuronal activity stimulates mRNA translation crucial for learning and development. While FMRP (Fragile X Mental Retardation Protein) and CYFIP1 (Cytoplasmic FMR1 Interacting Protein 1) regulate translation, the mechanism linking translation to neuronal activity is not understood. We now find that translation is stimulated when FMRP and CYFIP1 translocate to the potassium channel Slack (KCNT1, Slo2.2). When Slack is activated, both factors are released from eIF4E (Eukaryotic Initiation Factor 4E), where they normally inhibit translation initiation. A constitutively active Slack mutation and pharmacological stimulation of the wild-type channel both increase binding of FMRP and CYFIP1 to the channel, enhancing the translation of a reporter for β-actin mRNA in cell lines and the synthesis of β-actin in neuronal dendrites. Slack activity-dependent translation is abolished when both FMRP and CYFIP1 expression are suppressed. The effects of Slack mutations on activity-dependent translation may explain the severe intellectual disability produced by these mutations in humans. HIGHLIGHTS:Activation of Slack channels triggers translocation of the FMRP/CYFIP1 complexSlack channel activation regulates translation initiation of a β-actin reporter constructA Slack gain-of-function mutation increases translation of β-actin reporter construct and endogenous cortical β-actinFMRP and CYFIP1 are required for Slack activity-dependent translation. IN BRIEF:Malone et al . show that the activation of Slack channels triggers translocation of the FMRP/CYFIP1 complex from the translation initiation factor eIF4E to the channel. This translocation releases eIF4E and stimulates mRNA translation of a reporter for β-actin and cortical β-actin mRNA, elucidating the mechanism that connects neuronal activity with translational regulation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要