Chrome Extension
WeChat Mini Program
Use on ChatGLM

Towards Drone Flocking Using Relative Distance Measurements.

Leveraging Applications of Formal Methods (ISoLA)(2022)

Research Division for Cyber-Physical Systems | Department of Computer Science | Microsoft

Cited 2|Views20
Abstract
We introduce a method to form and maintain a flock of drones only based on relative distance measurements. This means our approach is able to work in GPS-denied environments. It is fully distributed and therefore does not need any information exchange between the individual drones. Relative distance measurements to other drones and information about its own relative movement are used to estimate the current state of the environment. This makes it possible to perform lookahead and estimate the next state for any potential next movement. A distributed cost function is then used to determine the best next action in every time step. Using a high-fidelity simulation environment, we show that our approach is able to form and maintain a flock for a set of drones.
More
Translated text
Key words
drone flocking,relative distance measurements
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
Eversham, J.,Ruiz, V.F.
2010

被引用5 | 浏览

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest